Titanium dioxide nanotube arrays: A novel approach into periodontal tissue regeneration on the surface of titanium implants

نویسندگان

  • S. Goodarzi
  • N. Nezafati
چکیده

Titanium alloys have been extensively used as promising implant materials. The anodic oxide layer on the surface of this alloy can be a compact, porous or a tubular structure, which has a direct impact on the final characteristics of the implants. In this study, nano topographic oxide arrays were synthesized on the surface of titanium substrates using an anodic oxidation technique. The anodization process was performed at a two-electrode electrochemical cell, and then the samples were annealed to obtain crystalline structures. The synthesized samples were analyzed to evaluate the compositional phase, morphology, surface hydrophilicity and corrosion resistance of the nanostructured oxide arrays in artificial saliva. Microscopic observations confirmed the formation of a nanotubular structure on the surface of titanium substrate depending on the anodization condition. After heat-treatment at 570 °C, crystallographic analyses showed that the obtained crystalline phase was a mixture of Anatase and Rutile phases. The electrochemical impedance spectroscopy (EIS) results indicated a significant improvement in the corrosion resistance and electrochemical stability of the anodized sample in artificial saliva compare to the control samples. In addition, the anodized samples showed a better hydrophilic characteristics, viability and proliferation of periodontal ligament cells in comparison with the un-anodized samples. This study demonstrated that the anodized titanium samples, with the nanotubular structure on the surfaces, could be considered as a good candidate for dental implants. Copyright © 2016 VBRI Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS

At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...

متن کامل

Effect of composition electrolyte on the morphology and photocatalytic activity of anodized titanium nanoporous

The morphology of titanium dioxide and titanium dioxide-tungsten trioxide nanocomposite films fabricated by anodizing in a glycerol solution containing 0.13 M NH4F and different quantity of Na2WO4 was investigated as a function of sodium tungstate concentrations. The effects of sodium tungstate concentration on the surface morphology were observed by scanning electron microscopy (SEM). It was c...

متن کامل

Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study

TiO2 nanotube arrays on the surface of dental implants were fabricated by two-step anodic oxidation. Their effects on bone-implant contact were researched by a pilot in vivo study. The implants were classified into four groups. An implant group with TiO2 nanotube arrays and recombinant human bone morphogenetic protein-2 (rhBMP-2) was compared with various surface implants, including machined su...

متن کامل

Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.

A vertically aligned nanotube array of titanium oxide was fabricated on the surface of titanium substrate by anodization. The nanotubes were then treated with NaOH solution to make them bioactive, and to induce growth of hydroxyapatite (bone-like calcium phosphate) in a simulated body fluid. It is shown that the presence of TiO2 nanotubes induces the growth of a "nano-inspired nanostructure", i...

متن کامل

Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion

Competition occurs between the osteoblasts in regional microenvironments and pathogens introduced during surgery, on the surface of bone implants, such as joint prostheses. The aim of this study was to modulate bacterial and osteoblast adhesion on implant surfaces by using a nanotube array. Titanium oxide (TiO2) nanotube arrays, 30 nm or 80 nm in diameter, were prepared by a two-step anodizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016